Fluostatins A and B, New Inhibitors of Dipeptidyl Peptidase III, Produced by *Streptomyces* sp. TA-3391

II. Structure Determination

TETSUO AKIYAMA*, KAZUO T. NAKAMURA[†], YOSHIKAZU TAKAHASHI, HIROSHI NAGANAWA, YASUHIKO MURAOKA, TAKAAKI AOYAGI and TOMIO TAKEUCHI

Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141, Japan †School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142, Japan

(Received for publication January 30, 1998)

In the course of our screening program for new inhibitors of dipeptidyl peptidase III (EC 3.4.14.4), we discovered fluostatins A and B (1 and 2, Fig. 1) from the culture broth of *Streptomyces* sp. TA-3391. The taxonomy of the producing strain, fermentation, isolation, physico-chemical properties and biological properties have been described in the preceding paper¹⁾. Here we report on the structure determination of 1 and 2 on the basis of spectroscopic studies, chemical studies and X-ray crystallographic analysis.

The physico-chemical properties of 1 and 2 were described in the previous paper¹⁾. The molecular formulae of 1 ($C_{18}H_{10}O_5$) and 2 ($C_{18}H_{14}O_6$) were determined by interpretation of the HRFAB-MS, NMR spectral analyses and elemental analyses.

The 1 H and 13 C NMR spectra of 2 showed the presence of twelve protons and eighteen carbons. The DEPT experiment revealed that these carbons consisted of two carbonyls, twelve other sp^{2} and four sp^{3} carbons. The carbons bearing protons were assigned by a Hetero-

nuclear Single Quantum Coherence (HSQC) experiment. These data are summarized in Table 1.

Two partial structures of **2** were established on the basis of $^1\text{H-}^1\text{H}$ coupling constants in the ^1H NMR spectrum and Heteronuclear Multiple Bond Correlation (HMBC) experiment (Fig. 2-b). A 4-bond coupling observed from an aromatic methine proton at δ 7.48 (H-5) to an aromatic carbon at δ 133.6 (C-6b) suggested the connectivity between 11 and 11a/6a and 6b.

To confirm the structure of 2, it was acetylated with acetic anhydride in pyridine to give fully aromatized acetate (3, 41%) with an elimination of AcOH/H₂O. Yellow prism crystals of 3 were obtained from acetone and were suitable for the X-ray analysis. The result is shown in Fig. 3. Thus, it was confirmed that the planar structure of 2 was 1,2,3,4-tetrahydro-1,2,6,7-tetrahydroxy-3-methyl-11H-benzo[a]fluorenone-4,11-dione.

As described in the previous paper¹⁾, 1 was not soluble in various solvents. Therefore, the sodium salt of 1 (1-Na) in DMSO- d_6 was used for the NMR analyses. The ¹H, and ¹³C NMR spectral analyses, HSQC, DEPT and HMBC experiments of 1-Na were performed. These data are summarized in Table 1. They showed that 1-Na had one carbonyl carbon at δ 181.1 (C-1) and two aromatic carbons at δ 137.2 (C-2) and 143.7 (C-3) instead of three aliphatic carbons in the cyclohexenone moiety of 2 (C-1 through C-3). The chemical shifts of the other protons and carbons were similar between 1-Na and 2. These data showed that 1 had a quinone moiety instead of the cyclohexenone moiety of 2.

Compound 3 was converted to 1-Na to confirm the structure of 1. Deacetylation of 3 with MeONa, followed by oxidation with manganese (IV) oxide gave 1-Na (43%). Thus, the structure of 1 was determined to be 1,4-dihydro-6,7-dihydroxy-3-methyl-11*H*-benzo[*a*]-fluorenone-1,4,11-trione (Fig. 1-1).

Fig. 1. Structures of 1, 2 and 3.

Table 1. ¹ H and ¹³ C NMR data of 1, 2 and	Table 1	le 1. ¹ H and	¹³ C NMR	data of 1	, 2 and 3.
--	---------	--------------------------	---------------------	-----------	------------

Carbon No.	1 (sodium salt) in DMSO-d ₆		2 in DMSO- <i>d</i> ₆		3 in Me_2CO-d_6	
	$\delta_{\rm C}$ (100MHz)	$\delta_{\rm H}$ (<i>J</i> in Hz, 400 MHz)	$\delta_{\rm C}$ (100 MHz)	$\delta_{\rm H}$ (<i>J</i> in Hz, 400 MHz)	$\delta_{\rm C}$ (100 MHz)	$\delta_{\rm H}$ (<i>J</i> in Hz, 400 MHz)
1	181.1 (s)		63.5 (d)	5.46 (1H, d, 3.4)	145.1 (s)	
2		6.63 (1H, q, 1.9)	74.7 (d)	4.02 (1H, dd, 3.4, 2.1)	126.9 (d)	7.27 (1H, s)
3	143.7 (s)		41.5 (d)	3.17 (1H, dq, 6.9, 2.1)	130.1 (s)	
4	185.7 (s)		197.6 (s)		143.1 (s)	
4a	132.7 ^a (s)		132.4 (s)		131.2 ^b (s)	
5	121.3 (d)	6.96 (1H, s)	119.4 (d)	7.48 (1H, s)	123.8 (d)	7.97 (1H, s)
6	166.8 (s)		149.0 (s)	, , ,	145.1 (s)	
6a	139.9 (s)		133.6 (s)		131.5 ^b (s)	
6b	127.6 (s)		125.4 (s)		134.4 (s)	
7	155.7 (s)		150.6 (s)		145.7 (s)	
8	124.0 (d)	6.66 (1H, d, 8.0)	123.9 (d)	7.08 (1H, dd, 8.2, 0.9)	130.9 (d)	7.28 (1H, dd, 7.7, 0.9)
9	129.7 (d)	6.97 (1H, dd, 8.0, 6.9)	131.6 (d)	7.31 (1H, dd, 8.2, 7.1)	132.3 (d)	7.48 (1H, dd, 7.7, 7.3)
10	112.6 (d)	6.77 (1H, d, 6.9)	116.2 (d)	7.21 (1H, dd, 7.1, 0.9)	122.5 (d)	7.58 (1H, dd, 7.3, 0.9)
10a	134.0 (s)	、	135.3 (s)	, , , , ,	136.3 (s)	
11	191.6 (s)		192.3 (s)		190.6 (s)	
11a	135.0 ^a (s)		134.0 (s)		ь	
11b	117.4 (s)		134.3 (s)		123.2 (s)	
12	15.2 (q)	1.98 (3H, d, 1.9)	11.3 (q)	1.17 (3H, d, 6.9)	16.2 (q)	16.2 (3H, s)
-OH	(-1)	16.87 (1H, br s)	`**	11.50 (1H, br s)		
		, , ,		5.31 (1H, br s)		
-Me				, ,	20.5 (q)	2.58 (3H, s)
$(4 \times Ac)$)				21.2 (q)	2.57° (3H, s)
(,				21.3 (q)	2.57° (3H, s)
					21.8 (q)	2.56 (3H, s)
=CO					169.3 (s)	
$(4 \times Ac)$)				169.2 (s)	
(•				169.6 (s)	
					170.8 (s)	

a,c May be exchangable. b May be exchangable, however, one carbon signal was not detectable.

Fig. 2. HMBC correlations and ¹H-¹H couplings for fluostains A (a) and B (b).

Experimental

General

Chemicals employed were as follows: Acetic anhydride from Wako Pure Chemicals Industries, Ltd., Osaka,

Japan; Manganese(IV) oxide from Aldrich Chemical Co.,Inc., Milwaukee, USA; Diaion HP-20 from Nippon Rensui Co., Japan; All other chemicals were of analytical grade. NMR spectra were recorded on a Jeol JNM-GX400 NMR spectrometer. MS spectra were obtained

Fig. 3. Molecular structure of 3.

The thermal ellipsoids are given at 50% probability.

on a HITACHI M-80H mass spectrometer.

Preparation of 3

To compound 2 (118.4 mg) in pyridine (10 ml) was added acetic anhydride (0.628 ml) at room temperature. The mixture was stirred for 26 hours, then acetylation was stopped by adding 3 drops of MeOH. The reaction mixture was diluted with water (50 ml) and extracted with EtOAc (50 ml). The organic layer was dried over Na_2SO_4 and evaporated. The residue was dissolved in Me_2CO -hexane and crystallized to give 3 as yellow prisms (70.9 mg, 41%): Rf 0.16 (Toluene - EtOAc, 4:1); EI-MS m/z 476 (M⁺).

X-Ray Crystallographic Analysis of 3

A yellow prism crystal of 3 having approximate dimensions of $0.60 \times 0.40 \times 0.30$ mm was mounted in a quartz capillary. All measurements were made on a Rigaku AFC5R diffractometer using Ni-filtered Cu-Kα radiation. The crystal data are as follows: Empirical formula; $C_{26}H_{20}O_9$. F. W.; 476.44. Crystal system; orthorhombic. Lattice parameters; a = 13.560(2) Å, b =19.075(1) Å, c = 17.291(1) Å, $V = 4472.5(6) \text{ Å}^3$. Space group; Pbca. Z value; 8. Dcalc; 1.415 g/cm³. μ (CuK α); 9.12 cm⁻¹. The intensity data were collected by using the ω -2 θ scan technique to a maximum 2 θ value of 124°. Of the 3959 reflections which were collected, 2293 were unique. The structure was solved by direct methods and refined by the method of full-matrix least-squares with anisotropic thermal parameters for all non-hydrogen atoms. The final R value was 0.061.

Chemical Conversion from 3 to 1-Na

Compound 3 (57.7 mg) in MeOH (100 ml) was treated with 28% MeONa - MeOH (0.245 ml) for 1 minute at 4°C. Manganese (IV) oxide (10 mg) was added and the solution was stirred for another 68 hours at 4°C. Undisolved material was filtered off. The filtrate was neutralized by AcOH and evaporated under reduced pressure. The residue (34.7 mg) was dissolved in 0.005 N aq. NaHCO₃ (100 ml), and was adsorbed on Diaion HP-20 column (100 ml) at room temperature. After washing with 10% aq. Me₂CO, the column was eluted with 30% aq. Me₂CO to give 1-Na as purple needles (17.6 mg, 43%). ¹H NMR spectrum of the product was essentially the same as that of natural 1-Na.

Reference

AKIYAMA, T.; S. HARADA, F. KOJIMA, Y. TAKAHASHI, C. IMADA, Y. OKAMI, Y. MURAOKA, T. AOYAGI & T. TAKEUCHI: Fluostatins A and B, new inhibitors of dipeptidyl peptidase III, produced by *Streptomyces* sp. TA-3391. I. Taxonomy, production and biological activities. J. Antibiotics 51: 553~559, 1998